制冷技术在当今社会工农业生产、日常生活等多个领域均起到了至关重要的作用,联合国统计数据表明全球每年25-30%的电力被用于各种各样的制冷应用。而这些应用绝大部分依赖传统的气体压缩制冷技术,普遍使用对环境和人体有害的制冷剂。因此,寻求绿色、环保、低能耗的替代制冷方案已经成为学术界和工业界共同努力的方向。特别地,当前我国高端制冷压缩机技术仍然欠缺,探索新的制冷技术方案则有望从根源上解决该技术领域的“卡脖子”问题。
近年来,基于固态相变热效应(caloriceffects)的固态制冷技术被认为是最有希望取代传统气体压缩制冷的技术方案。固态相变热效应主要包括磁卡效应(magnetocaloriceffect,MCE)、电卡效应(electrocaloriceffect,ECE)、弹卡效应(elastocaloriceffect,eCE)以及压卡效应(barocaloriceffect,BCE)。前三者分别源于相应外场对铁性体系(ferroics)中磁矩、铁电极化或晶体结构畴的有序度的调控,而后者则常常涉及压力诱导的晶体结构相变。固态相变制冷材料的性能主要由等温熵变所描述。固体压卡效应的制冷循环,如图1所示。遵循以上的物理认识,经过数十年的发展,主流固态相变制冷材料的等温熵变提高到了50Jkg-1K-1左右,且需要较大的外场,这成为该技术走向应用的障碍。因此,如何提高固态相变制冷材料的性能成为一个兼具物理意义和应用价值的研究课题。
图1:压卡效应材料的制冷循环示意图
SYNL功能材料与器件研究部李昺研究员、张志东研究员、任卫*研究员等组成的研究团队在一系列称为塑晶(plasticcrystals)的有机材料里发现了基于分子取向序的压卡效应,等温熵变最高达Jkg-1K-1,较传统固态相变制冷材料高出了一个数量级,见图2。塑晶是一类高度无序的固体材料,其有机分子或者无机结构单元的取向完全无序,但是质心位置却构成了长程有序的晶格。在这些体系中,所需驱动压力极低,且材料十分廉价,具有诱人的应用前景。选择新戊二醇(英文名:neopentylglycol,缩写为NPG;分子式:C5H12O2;IUPAC名称为2,2-Dimethylpropane-1,3-diol)为模型材料,运用高压热测量技术、高压中子散射技术、高压同步辐射X射线衍射技术等,揭示了塑晶材料出现庞压卡效应的深层次物理机制。该项研究工作发表于Nature(